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Relaxation of classical many-body Hamiltonians in one dimension

Stefano Lepri*
Max-Planck-Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Straße 38, D-01187 Dresden, Germany

~Received 3 June 1998!

The relaxation of Fourier modes of Hamiltonian chains close to equilibrium is studied in the framework of
a simple mode-coupling theory. Explicit estimates of the dependence of relevant time scales on the energy
density~or temperature! and on the wave number of the initial excitation are given. They are in agreement with
previous numerical findings on the approach to equilibrium and turn out to be also useful in the qualitative
interpretation of them. The theory is compared with molecular dynamics results in the case of the quartic
Fermi-Pasta-Ulam potential.@S1063-651X~98!05011-9#

PACS number~s!: 05.45.1b, 05.70.Ln, 63.10.1a
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I. INTRODUCTION AND MOTIVATIONS

Consider the conceptual experiment where one of the
mal modes of an idealized, one-dimensional crystal is
cited by means of some external source in such a way
the system is brought far from thermal equilibrium. Aft
switching off the external perturbation, it will relax again
the equipartition state, described by the canonical meas
The classical question is how long it will take. Such a ba
issue was seriously reconsidered in the light of recent res
of contemporary nonlinear dynamics, in particular after
discovery that weakly nonlinear systems may display
tremely long relaxation times. The latter are related to
effective ‘‘freezing’’ of some degrees of freedom, i.e., to t
slow diffusion in phase space~see, for example, Ref.@1# for
a recent critical discussion and further bibliographical ref
ences!. Because of their simplicity, Hamiltonian chains
oscillators are suitable model systems to discuss the prob
from both an analytical and a simulation point of view.

Although some theoretical work@2,3# indicates that equi-
partition in a strict sense is always attained in the thermo
namic limit for chains at finite temperature~or energy per
particle!, no explicit estimates of the time scales needed
known. The problem has been attached mainly from the
merical side, by looking at the time relaxation of suitab
indicators of equipartition among the Fourier modes of
chain@4–7#. In particular, recent studies@4,8# focused on the
dependence of relaxation times on the energy density or t
perature and some empirical scaling laws were found. No
theless, no quantitative explanation of the latter has so
been given. The need for some analytic clue is even m
evident as one consider that the computational limits
simulations can be rapidly reached. This is of course a p
ticularly serious limitation at very low energies, when t
interaction among modes and the resulting dissipative eff
are extremely weak.

A further motivation comes from the closely related pro
lem of energy transport in such systems. As is well know
the relaxation of fluctuations is strictly connected to transp
coefficients and the existence of slow time scales mus
reflected somehow in their properties. Indeed, extensive
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lecular dynamics studies@9# gave evidence of the divergenc
of the thermal conductivity associated with the algebraic
cay of the correlation function appearing in the correspo
ing Green-Kubo formula.

The present work aims to give a contribution to the co
prehension of both questions by studying the relaxation
chains with an acoustic spectrum. The models we will re
to are introduced Sec. II. When the system is not too far fr
equilibrium, one can rely on well-established theories, su
as the perturbative and mode-coupling approximations
are reviewed in Sec. III. Their validity will be compared wit
the outcomes of numerical simulations for the specific c
of a interatomic potential with quartic nonlinearities~Sec.
IV !. Besides the original motivations, the comparison con
tutes a nice test of mode-coupling theory and its typical f
tures, i.e., the existence of long time tails with nontriv
exponents, and the nonanalytic behavior of the spectrum
relaxation times. This latter property is actually a peculiar
of nonequilibrium dynamics in one dimension. As it will b
hopefully clear, this approach will be extremely useful f
the problems at hand, as they provide estimates of the re
ation times of the Fourier modes of the chain. Rather surp
ingly, a comparison with some previous numerical resu
will show that the latter are largely the main cause of sl
relaxation to equipartition~Sec. V!.

II. ONE-DIMENSIONAL MANY-BODY HAMILTONIANS

We consider a chain ofN anharmonic oscillators and de
note with ql the displacement of thel th particle from its
equilibrium position. The Hamiltonian reads

H5(
l 51

N Fpl
2

2
1V~ql 112ql !G , ~1!

where the usual Born–von Ka´rmán boundary conditionsql
5ql 1N are assumed and the potential energy is of the fo

V~x!5
x2

2
1VA~x!, ~2!

with VA denoting the anharmonic part of it. We will consid
homogeneous lattices, so that all the masses are set equ
unity andpl5q̇l . The lattice spacing is also set to unity a
7165 © 1998 The American Physical Society
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7166 PRE 58STEFANO LEPRI
well as the harmonic frequency, so that all variables in
following are adimensional. This also means that the so
velocity, as defined in the harmonic approximation, is eq
to one.

In the following we will always refer to the energy den
sity « ~energy per particle! and/or to the corresponding tem
peraturekBT51/b. Obviously, for strongly nonlinear sys
tems, the two quantities are not in general stric
proportional.

The ~complex! amplitudesQk of the Fourier modes are
defined through the usual transformation

Qk5
1

AN
(
l 51

N

qle
i ~2pk/N!l , Q2k5Qk* ,

k52
N

2
11,...,

N

2
. ~3!

Once the Hamiltonian is expressed in these new canon
variables, the equations of motion become

Q̇k5
]H

]Pk*
5Pk , ~4!

Ṗk52
]H

]Qk*
52vk

2Qk1Fk , ~5!

with Fk being the interaction force among modes, and
have introduced the usual normal-mode frequencies

vk52UsinS pk

N D U. ~6!

III. ESTIMATE OF THE RELAXATION TIMES

The formulation of stochastic equations for the dynam
of the relevant variables is rather customary to describe
relaxation close to equilibrium@10#. The idea is to describe
the effective motion of suitable ‘‘slow’’ observables by r
ducing the level of the description. The general strategy
volves projection on their subspace and results in linear n
Markovian equations. Whenever a sharp separation of t
scales is possible the latter reduce to their Markovian lim
The memory term determines the relaxation properties
can be estimated self-consistently. Our aim is to apply
above procedure to the present system. In the following
subsections we summarize the relevant steps.

A. General setting

Due to the conservation law of total momentum, we e
pect that in the present case the slow dynamics should
associated with the long-wavelength Fourier modesQk with
uku!N/2. Moreover, translational invariance implies th
each mode is uncorrelated from the others so that we
consider each mode separately.@One can easily convince
oneself of this statement by computing, for instance, the c
relation ^Qk(t)Qk8

* (0)& and imposing that̂ql(t)ql 8(0)& de-
pends only onu l 2 l 8u.# Accordingly, let us consider the se
e
d
l
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e

s
e

-
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-
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of Qk andPk as relevant variables and define the project
operatorP̂ acting on the scalar observableX as

P̂X5(
k

F ^XQk* &

^uQku2&
Qk1

^XPk* &

^uPku2&
PkG . ~7!

The projection of the equation of motion leads to@10#

Q̇k5Pk , ~8!

Ṗk52ṽk
2Qk2E

0

t

Gk~ t2s!Pk~s!ds1Rk , ~9!

whereRk5(12P̂) Ṗk is the so-called random force that
related to the memory function by the fluctuation-dissipat
theorem

Gk~ t !5b^Rk~ t !Rk* ~0!& ~10!

and the renormalized frequencies are given, for a gen
Hamiltonian such as Eq.~1!, by

ṽk
25

1

b^uQku2&
5~11a!vk

2 , a~b!5
1

b

Ee2bV~x!dx

Ex2e2bV~x!dx

21.

~11!

Obviously, in the harmonic limita→0 and the usual bare
dispersion relation~6! is recovered. Here and in the follow
ing we will always deal with bounding potentials so that t
integrals in Eq.~11! are convergent. The definition~11!
amounts then to a renormalization of the sound speed f
unity to the temperature dependent valueṽ5A11a.

The main object of study will be the normalized correl
tion function

Gk~ t !5bṽk
2^Qk~ t !Qk* ~0!&, ~12!

which is defined in such a way thatGk(0)51. It satisfies the
equation of motion@10#

G̈k1ṽk
2Gk52E

0

t

Gk~ t2s!Ġk~s!ds. ~13!

Introducing the Laplace transformsGk(z) andGk(z) with the
definition

Gk~z!5E
0

`

e2 iztGk~ t !dt, ~14!

one has that@with Ġk(0)50#

Gk~z!5
iz1Gk~z!

z22ṽk
22 izGk~z!

. ~15!

If the dissipation is small enough with respect toṽk , the
transformGk(z) has two poles close to the real axis in th
complex plane approximatively given by

6ṽk2
i

2
lim

z→ṽk1 i01

Gk~z! ~16!
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PRE 58 7167RELAXATION OF CLASSICAL MANY-BODY . . .
~at fixed wave number and provided the limit exists!. This
corresponds to both a shift of the renormalized frequen
and a small dampinggk , given by the imaginary part of Eq
~16! @i.e., the real part ofGk(ṽk)#. Accordingly, the inverse
of the latter defines a characteristic relaxation time of e
Fourier mode.

B. Mode-coupling approximation

The above results are more or less formal manipulatio
We obviously need to compute explicitly the memory kern
and the relaxation ratesgk by resorting to some approxima
tions. A conceptual difficulty of the projection approach
the fact thatRk does not evolve with the full Liouvillean
operator associated withH @10#. One generally bypass th
problem by simply replacing

^Rk~ t !Rk* ~0!&→^Fk~ t !Fk* ~0!& ~17!

where the last average is on the full Gibbs measure. In s
a way, it is also implicitly assumed that slow terms possi
contained inFk are negligible in the thermodynamic lim
~see below!. A second simplification amounts to factorizin
multiple correlations so that the resulting approximate
pression of the memory kernelGk(z), together with Eq.~15!,
constitutes a closed system of equations forGk . The latter
has to be solved self-consistently.

Let us focus on the Fermi-Pasta-Ulam~FPU! potential

VA~x!5
1

3
g3x31

1

4
g4x4 ~18!

so thatFk5F k
(3)1F k

(4) with

F k
~3!52g3vk

1

AN
(

k11k25k
vk1

vk2
Qk1

Qk2
, ~19!

F k
~4!52g4vk

1

N (
k11k21k35k

vk1
vk2

vk3
Qk1

Qk2
Qk3

,

~20!

where the condition on the indices of the sum is intended
be modulo N ~quasimomentum conservation!. Obviously,
this represent a reasonable approximation of a generic an
monic potential in the limit of small anharmonicity. In th
approximation where multiple correlations factorize in pro
ucts, the memory kernel will be a sum of two terms~aver-
ages with an odd number ofQ vanish!

Gk~ t !5b@^F k
~3!~ t !F k

~3!* ~0!&1^F k
~4!~ t !F k

~4!* ~0!&#
~21!

and one can readily evaluate the two contributions from
cubic and quartic terms, respectively,

b^F k
~3!~ t !F k

~3!* ~0!&

'C3vk
2 1

N (
k11k25k

Gk1
~ t !Gk2

~ t !, ~22!
s

h

s:
l

ch
y

-

to

ar-
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e

b^F k
~4!~ t !F k

~4!* ~0!&

'C4vk
2 1

N2 (
k11k21k35k

Gk1
~ t !Gk2

~ t !Gk3
~ t !,

~23!

where we have defined the two constants

C353
g3

2

b~11a!2 , C4515
g4

2

b2~11a!3 . ~24!

The numerical factors come from counting all the possi
factorizations. Before going further, notice that in the pres
example we can easily understand the assumption of neg
ing slow components in Eq.~17!. The forceF k

(4) contains
indeed a term proportional toQkuQku2/N, which is clearly as
slow asQk itself. As assumed, its weight vanishes like 1/N,
but for any finiteN, it may be then regarded as one of th
sources of finite-size effects in the numerical simulations

Even with all the above simplifications the theory rema
too complicated to be solved. A further assumption is th
generally required, namely, that the sums in Eqs.~22! and
~23! can be replaced with their values atk50 @11#. For the
cubic case this amounts to settingk152k25k8 in Eq. ~22!,
yielding

b^F k
~3!~ t !F k

~3!* ~0!&'C3vk
2 1

N (
k8
Gk8

2
~ t !. ~25!

For the quartic term we can also extend the summation o
to the smallk terms that are almost resonating, e.g., those
which k12k22k3'0. This simplification is justified as in
the long time limit only the slowly oscillating contribution
should be significative. One can convince oneself that
kind of approximation leads to the same result~25! also for
the quartic term, withC3 replaced byC4 . Finally, in the
limit N→`, we let 2pk/N→q and replace the sums wit
integrals. The above hypothesis that we can setk50 in Eqs.
~22! and ~23! amounts therefore to saying that the memo
kernel can be written in the formG(q,z)5n(z)q2 for q
→0 @11#. As a result, one gets the self-consistency relat
for n from the Laplace transform of Eq.~10!,

n~z!'CE
0

`

dte2 iztE dq

2p
G 2~q,t !, ~26!

where C5C31C4 . This is readily solved by dimensiona
arguments@11# and yields

n~z!}
C

An~z!z
. ~27!

This last relation implies thatG(q,z);z21/3q2, so that the
limit in Eq. ~16! leads to a nonanalytic dependence of t
relaxation rates for small wave number:

g~q!}S C2

ṽ D 1/3

q5/3. ~28!

Generally speaking, the behavior of the relaxation rates w
the temperature will depend on the specific form of the
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7168 PRE 58STEFANO LEPRI
harmonic potential. Nevertheless, theq dependence shoul
be the same for all one-dimensional models where the the
applies.

C. Kinetic vs hydrodynamic relaxation

The above self-consistent result is expected to hold
strong anharmonicity and on very long~‘‘hydrodynamic’’!
time scales. On the other hand, in the usual perturba
limit, the system is basically a set of weakly interacting h
monic oscillators with renormalized frequencies. We c
then use the perturbation theory in our simple mode-coup
scheme. This basically amounts to neglecting the dissipa
on the right-hand side of Eq.~26! and approximateG(q,t)
'cosṽ(q)t. In this limit the factorization of correlations be
comes exact. Accordingly, Eq.~26! reduces then to a simpli
fied version of the usual perturbative formula@13#, where
only mode-mode contributions are taken into account. It th
follows that the spectrum of the dissipation rates is prop
tional tovk

2 times the sum of two terms whose magnitude
given by the constantsC3 andC4 , respectively. In the limit
of low temperatures and/or weak couplings the latter scal

~g3q!2

b~11a!5/2'~g3q!2« ~ for the cubic term!,

~29!
~g4q!2

b2~11a!7/2'~g4q!2«2 ~ for the quartic term!

for small wave numbers. It is of basic importance to comp
the latter~‘‘kinetic’’ ! time scale with the one determined
Sec. III B. For example, in the case of the quartic FPU mo
we have from Eqs.~28! and ~29!

thydro

tkin
;q1/3~g4«!2/3!1. ~30!

This implies that, for small enoughg4«, the initial relaxation
stage is dominated by the kinetic time scale, up to so
~possibly large! crossover time where the self-consisten
effects become relevant. In Sec. V we will return to this iss
to show its importance for the approach to equilibrium.

IV. MOLECULAR DYNAMICS RESULTS

As many assumptions are required in the theory, it is
portant to compare it with the outcomes of numerical sim
lations. To this aim, we considered the quartic FPU c
(g350). In this case, the only relevant parameter isg4« and
g4«!1 corresponds to the weakly chaotic regime@4#.

The numerical simulations were performed at constant
ergy by integrating the equations of motion with a thir
order symplectic algorithm@14#. We generally consider the
case where the second constant of motionP05Q̇0 is identi-
cally zero ~no uniform rotations of the chain!. Equilibrium
initial conditions were chosen by either assigning rand
velocities from a Gaussian distribution at the correspond
temperature or starting from equal mode amplitudes w
uniformly distributed random phases. The system th
evolves for a certain transient time in order to start the m
surements from the most generic phase-space point poss
ry
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In computing spectra and correlation functions, a fast Fou
transform routine has been used and the data are us
averaged over an ensemble of several trajectories~typically
between 20 and 200! to reduce statistical fluctuations.

Let us first of all comment on the dynamics of Fouri
modes. The correlation of the fluctuating force decays o
characteristic time that is expected to be much shorter t
the typical period of long-wavelength modes. Thus, if w
neglect memory effects and assume that a single relaxa
time dominates, Eq.~9! reduces to its Markovian limit~we
will return to the discrete case!

Q̈k1gkQ̇k1ṽk
2Qk5Rk , ~31!

where now the random force is well approximated by
Gaussian white process

^Rk~ t !Rk* ~ t8!&5
gk

b
d~ t2t8!. ~32!

For simplicity, in Eq.~31! we have also neglected the sma
frequency shift. Equation~31! explains qualitatively the nu-
merical results of Ref.@12#, where the dynamics of the
modes was studied for the quartic FPU case. In particu
the slow diffusion of energy observed there is immediat
understood as a consequence of the fact thatgk /ṽk!1 for
small k. The renormalization of the frequencies that w
proposed on purely phenomenological basis is, in the pre
context, a straightforward consequence of the projection
proach. Furthermore, the effective sound velocity can n
be explicitly computed by the definition~11! @at least up to a
correction from Eq.~16!#.

At high energy (g4«@1), where relaxation occurs o
faster time scales, it is easier to perform direct tests of
goodness of Eq.~31!. We first verified that the distributions
of the real and imaginary parts ofQk andPk are Gaussian. A
typical correlation functionGk is reported in Fig. 1. More-
over, we checked that the distribution of amplitudes a
phase jumps agrees with what was predicted from the
proximation~31! @15#. For completeness, we also measur

FIG. 1. Normalized autocorrelationG1(t) for the quartic FPU
model withg4«58.8 (T511.07) andN5256. The inset shows the
autocorrelation of the fluctuations of the mode energyE1 .
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PRE 58 7169RELAXATION OF CLASSICAL MANY-BODY . . .
the dependence of the effective oscillation frequency
compared it with the expected value given by the definit
~11! ~see Fig. 2!.

Clearly, the crucial point to be checked is the energy a
wave-number dependence of thegk . This was accomplished
by measuring the initial decay of the envelope ofGk ~see Fig.
1! for several«’s and k’s. Very good agreement with th
mode-coupling prediction is obtained for the dependence
gk on the wave number. The data reported in Fig. 3 giv
power law with an exponent 1.64, remarkably close to
expected value 5/3. Furthermore, Fig. 4 shows that also
scaling with energy is reasonably obeyed, at least within
limit of our simulations. Obviously, the computations b
come more and more time consuming with decreasing t
perature due to the rapid increase of relaxation times
finite-size effects~see below!. This imposes severe con
straints on the accessible lattice lengths and times.

A further analysis has been performed on the quantity

FIG. 2. Comparison between the numerical and expected re
malized frequencies. The symbols are obtained by measuring
oscillation period ofG1 for N564 and 128~diamonds and triangles
respectively!. The solid line is the theoretical value,@Eq. ~11!# and
the dashed one is the empirical formula of Ref.@12#. The small
systematic deviations are due to the small frequency shifts expe
from Eq. ~16!.

FIG. 3. Wave-number dependence of the relaxation ratesg(q)
at g4«58.8 for the quartic FPU potential. All the points were o
tained from the initial decay of the envelope ofG1 for increasing
values ofN up to N52048. The solid line is a power-law fitq1.64.
d
n

d

of
a
e
he
e

-
d

E5(
k

Ek , Ek5
1

2
uPku21

1

2
ṽk

2uQku2, ~33!

which is related to the typical indicators used in equipartiti
studies. Foruku!N/2 ~small noise amplitudes!, we expect
from Eq. ~31! that the effective mode energyEk is ruled by
the linear equation@15#

Ėk1gk~Ek2^Ek&!5Rk8 ~34!

~see the inset of Fig. 1!. This means that the asymptot
behavior of fluctuationsdE of the above-defined quantity ar
given ~in the thermodynamic limit! by

^dE~ t !dE~0!&}
1

N (
k

e2gkt'E dq

2p
e2g~q!t

}H t21/2 for t!tC

t23/5 for t@tC .
~35!

Here tC is the characteristic time scale at which a crosso
between the two relaxation behaviors occurs. Although
magnitude remains undetermined, we expect it to be v
large for small temperature. The crossover should beco
actually observable in the intermediate-energy region.

The numerical results are in substantial agreement w
those predictions. The simulations atg4«50.05 ~see Fig. 5!
indicate a power-law divergence in the spectrum ofdE with
an exponent20.5 in the observed domain. The statistic
accuracy and the length of the simulation are not sufficien
establish whether the apparent saturation forv,1023 is the
beginning of the crossover or simply a finite-size effect.
second series of simulations in the intermediate ene
range, i.e., forg4«50.45, is reported in Fig. 6. Despite th
strong finite-size effects at low frequency, the spectra se
to approach a power-law behavior with the expected mo
coupling exponent20.4 and the data are compatible wi
Eq. ~35! with a value oftC of the order of 102. Since further
support to the validity of the mode-coupling results is a

r-
he

ed

FIG. 4. Scaling of the relaxation rates with the energy densit«
for N564, 128, and 256~circles, squares, and pluses, respective!.
The inset shows the low-energy part. Straight lines correspond t«2

and«1/4, respectively.
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7170 PRE 58STEFANO LEPRI
reported in@16#, we reasonably conclude that no significati
deviations from the theory itself are observed in those t
of measurements.

V. PROBLEM OF RELAXATION TO EQUIPARTITION

At this point we want now to discuss some consequen
of the above analysis on the so-called FPU problem. Le
first focus again on the case of a purely quartic nonlinea
that has been intensively~re!studied by several authors i
recent years@4,6,8#. The numerical experiments have be
performed by feeding the initial energy in a packet of mod
and looking at the decay in time of suitable indicators
equipartition~see the quoted references for details!.

In the case when the initial excitation is around a lon
wavelength mode of wave numberq* and the system is no
too far from equipartition, we expect, from the discussion
Sec. III, that the slowest time scale will be of the order o

FIG. 5. Low-frequency part of the spectrum ofdE for the quartic
FPU model forg4«50.05. The solid lines refer to simulations wit
N52048 and 4096 and the dashed line correspond to av21/2. A
power-law fit gives an exponent20.4960.01 for 1023,v
,1022.

FIG. 6. Same as Fig. 5, but forg4«50.45. The curves refer to
N5512, 1024, and 2048~from bottom to top! and the dashed line
corresponds to the expected asymptotic lawv22/5.
e

s
s
y

s
f

-

f

tE5H ~g4«q* !22 for g4«!1

~g4«!21/4q
*
25/3 for g4«@1.

~36!

The subscriptE refers to the fluctuations close to the equ
librium state. The behavior in the high-energy limit is o
tained by means of Eq.~28! taking into account that« is
roughly proportional to the temperature as well as the f
that 11a grows with the square root of the temperatu
itself @see Eq.~11!#.

Indeed, the predicted regimes have been numerically
served@4#. Convincing numerical evidence of scaling law
~36! has been reported recently in Ref.@8#. This seem to
suggest that the linear theory already captures the quan
tive features. Moreover, qualitatively similar results we
found for different potentials in Ref.@17#.

As concerns the case of largerq* , the simulations re-
ported in Ref.@4# also showed that relaxation can be one
two orders of magnitude faster than in the previous situati
Even if the theory presented here applies better to the cas
small q* , it is worth remarking that its consequences a
also consistent with this observation.

Obviously, the very initial stage of the approach to eq
librium may well occur on a different time scale. In th
present framework, the latter should be interpreted as a
‘‘partial equilibration’’ time scaletNE . On the other hand, it
seem rather reasonable thattNE will be strongly dependen
on the chosen class of initial conditions and the specific fo
of the potential. As a matter of fact,tNE is determined by a
pure nonequilibrium dynamics and is of course inaccess
to the linear theory presented here. Despite this, the pre
results are useful in identifying this initial stage. As an e
ample, we are now able to make an instructive compari
with the numerical estimates oftNE . In Ref. @6# it is in fact
found that, for long-wavelength excitations (q* !1), tNE
;N1/2(q* «)21, so that

tNE

tE
;«N1/2q* !1 ~37!

for smallq* and/or small energy. We can then conclude th
the equilibration process is, at least for this class of init
conditions, mainly dominated by the linear regime. In oth
words, we can naturally understand it as an initial fast rel
ation to a quasiequilibrium state followed by the slow diff
sion of energy from the long-wavelength modes.

As already mentioned, the mechanisms determiningtNE
may be rather complex, however, and of very different n
ture depending on the initial state. An example is the cas
zone-boundary initial conditions (uq* u'p). Those rapidly
decay into localized chaotic excitations@19,8#, whose life-
time mainly determines the time to reach the quasith
malized state. Nevertheless, the comparison of our res
with the numerics may indicate that such a lifetime is, ev
in this case, considerably shorter than that of relaxation
Fourier modes@8#.

The high-energy scaling of Eq.~36! can be generalized to
an algebraic potential of the formVA(x)5gnxn, with n be-
ing an even integer. In this case, by extending Eqs.~24! and
~28!, it is found thattE is proportional to« (1/n21/2).



ly

e
es

b
he
ai
n

ca

n
ly

ha
f-

g
ca

e

e
x

ca

nce
ed,
en
ry
be
ns

ng
be-
s a
f
nt
es
ted
e
en-

ti-
is
is
ch
ns

n-
ks
fied
rest
the

PRE 58 7171RELAXATION OF CLASSICAL MANY-BODY . . .
Finally, let us comment on the FPU model with pure
cubic potential (g450). A recent numerical study@18#
showed clear evidence for a divergence as«23 of the relax-
ation time. Nevertheless, only chains as short asN532 were
considered and it is not completely clear if the systems
above the equipartition threshold@3#. A more detailed analy-
sis would of course be desirable to check the dependenc
this scaling onN and to compare the results with the on
presented here.

VI. CONCLUSIONS

The simple mode-coupling approach provided a valua
amount of qualitative and quantitative information on t
relaxation times of the Fourier modes in a Hamiltonian ch
such as Eq.~1!. In particular, a clear physical interpretatio
of them can be achieved. For the paradigmatic example
the quartic FPU model, the crossover between the two s
ing regions atg4«'0.2 ~see again Fig. 4! could be regarded
as the temperature threshold beyond which self-consiste
and hydrodynamic effects play a major role. Remarkab
such a scale is roughly equal to the so-called strong stoc
ticity threshold (g4«'0.1), above which new dynamical e
fects ~i.e., faster diffusion in phase space! are believed to
appear@4#. From this point of view it would be challengin
to try to connect the present results with strictly dynami
properties.

The explicit estimates given in the present work turn
out to explain several previous results on the approach
equilibrium at finite temperature. As exemplified above, th
are precious information for the numerical study. For e
ample, the slow temporal decay of the equipartition indi
i,
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tors may be better understood having realized the existe
of the long time tails such as those of Figs. 5 and 6. Inde
it is clear that the slow diffusion of energy has to be tak
into account when studying the relaxation from an arbitra
initial condition. More generally, such time scales should
always considered in practice when performing simulatio
with chains of large sizes.

Although the existence of long time tails is not surprisi
for a low-dimensional system, the substantial agreement
tween the theory and numerical simulation is nonetheles
relevant result by itself. Actually, the direct verification o
mode-coupling theories in one dimension is still a curre
subject of study, for example, in the field of lattice gas
@20#. Furthermore, the validity of such theories is not gran
in general. It is in fact known that they fail in predicting th
characteristic relaxation times of spin waves of the Heis
berg model in one and two dimensions@21#.

Finally, let us remark that the theory allows one to es
mate the long time tails of the heat-flux correlation, which
directly related to the thermal conductivity of the chain. Th
allows one to explain quantitatively the divergence of su
transport coefficient observed in the numerical simulatio
@9,16#.
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